Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370703

RESUMO

Background: Social determinants of health (SDoH) like socioeconomics and neighborhoods strongly influence outcomes, yet standardized SDoH data is lacking in electronic health records (EHR), limiting research and care quality. Methods: We searched PubMed using keywords "SDOH" and "EHR", underwent title/abstract and full-text screening. Included records were analyzed under five domains: 1) SDoH screening and assessment approaches, 2) SDoH data collection and documentation, 3) Use of natural language processing (NLP) for extracting SDoH, 4) SDoH data and health outcomes, and 5) SDoH-driven interventions. Results: We identified 685 articles, of which 324 underwent full review. Key findings include tailored screening instruments implemented across settings, census and claims data linkage providing contextual SDoH profiles, rule-based and neural network systems extracting SDoH from notes using NLP, connections found between SDoH data and healthcare utilization/chronic disease control, and integrated care management programs executed. However, considerable variability persists across data sources, tools, and outcomes. Discussion: Despite progress identifying patient social needs, further development of standards, predictive models, and coordinated interventions is critical to fulfill the potential of SDoH-EHR integration. Additional database searches could strengthen this scoping review. Ultimately widespread capture, analysis, and translation of multidimensional SDoH data into clinical care is essential for promoting health equity.

2.
J Med Internet Res ; 24(11): e34067, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36040993

RESUMO

BACKGROUND: Evidence from peer-reviewed literature is the cornerstone for designing responses to global threats such as COVID-19. In massive and rapidly growing corpuses, such as COVID-19 publications, assimilating and synthesizing information is challenging. Leveraging a robust computational pipeline that evaluates multiple aspects, such as network topological features, communities, and their temporal trends, can make this process more efficient. OBJECTIVE: We aimed to show that new knowledge can be captured and tracked using the temporal change in the underlying unsupervised word embeddings of the literature. Further imminent themes can be predicted using machine learning on the evolving associations between words. METHODS: Frequently occurring medical entities were extracted from the abstracts of more than 150,000 COVID-19 articles published on the World Health Organization database, collected on a monthly interval starting from February 2020. Word embeddings trained on each month's literature were used to construct networks of entities with cosine similarities as edge weights. Topological features of the subsequent month's network were forecasted based on prior patterns, and new links were predicted using supervised machine learning. Community detection and alluvial diagrams were used to track biomedical themes that evolved over the months. RESULTS: We found that thromboembolic complications were detected as an emerging theme as early as August 2020. A shift toward the symptoms of long COVID complications was observed during March 2021, and neurological complications gained significance in June 2021. A prospective validation of the link prediction models achieved an area under the receiver operating characteristic curve of 0.87. Predictive modeling revealed predisposing conditions, symptoms, cross-infection, and neurological complications as dominant research themes in COVID-19 publications based on the patterns observed in previous months. CONCLUSIONS: Machine learning-based prediction of emerging links can contribute toward steering research by capturing themes represented by groups of medical entities, based on patterns of semantic relationships over time.


Assuntos
COVID-19 , Humanos , Aprendizado de Máquina , Semântica , Aprendizado de Máquina Supervisionado , Síndrome de COVID-19 Pós-Aguda
3.
Front Physiol ; 13: 862411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923238

RESUMO

Shock is one of the major killers in intensive care units, and early interventions can potentially reverse it. In this study, we advance a noncontact thermal imaging modality for continuous monitoring of hemodynamic shock working on 1,03,936 frames from 406 videos recorded longitudinally upon 22 pediatric patients. Deep learning was used to preprocess and extract the Center-to-Peripheral Difference (CPD) in temperature values from the videos. This time-series data along with the heart rate was finally analyzed using Long-Short Term Memory models to predict the shock status up to the next 6 h. Our models achieved the best area under the receiver operating characteristic curve of 0.81 ± 0.06 and area under the precision-recall curve of 0.78 ± 0.05 at 5 h, providing sufficient time to stabilize the patient. Our approach, thus, provides a reliable shock prediction using an automated decision pipeline that can provide better care and save lives.

4.
Sci Rep ; 12(1): 810, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039533

RESUMO

The COVID-19 pandemic has revealed the power of internet disinformation in influencing global health. The deluge of information travels faster than the epidemic itself and is a threat to the health of millions across the globe. Health apps need to leverage machine learning for delivering the right information while constantly learning misinformation trends and deliver these effectively in vernacular languages in order to combat the infodemic at the grassroot levels in the general public. Our application, WashKaro, is a multi-pronged intervention that uses conversational Artificial Intelligence (AI), machine translation, and natural language processing to combat misinformation (NLP). WashKaro uses AI to provide accurate information matched against WHO recommendations and delivered in an understandable format in local languages. The primary aim of this study was to assess the use of neural models for text summarization and machine learning for delivering WHO matched COVID-19 information to mitigate the misinfodemic. The secondary aim of this study was to develop a symptom assessment tool and segmentation insights for improving the delivery of information. A total of 5026 people downloaded the app during the study window; among those, 1545 were actively engaged users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot "Satya" increased thus proving the usefulness of a mHealth platform to mitigate health misinformation. We conclude that a machine learning application delivering bite-sized vernacular audios and conversational AI is a practical approach to mitigate health misinformation.


Assuntos
COVID-19/epidemiologia , Desinformação , Aprendizado de Máquina , Processamento de Linguagem Natural , Pandemias , Feminino , Saúde Global , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...